Electronic Materials Letters, Vol. 6, No. 2 (2010), pp. 87-90
DOI: 10.3365/em1.2010.06.087 Published 30 June 2010

A Study of Fullerenes by MEC Polynomials
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The modified eccentric connectivity polynomial of a molecular graph, G, is defined as A(Gx) =
> ae V(G)nG(a)ng(“) where €g(a) is the eccentricity of vertex a and ng(a) is the sum of the degrees of its neigh-
borhoods. In this paper, the polynomial for three infinite classes of fullerenes is computed.
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1. INTRODUCTION

A topological index is a graphic invariant used in a struc-
ture property correlations. Topological indices defined by the
distance function d(-,-) are called distance-based topological
indices. Here for arbitrary vertices x and y, the distance
d(x,y) is defined as the length of a minimal path connecting
x and y. The Wiener index!" is the first distance-based topo-
logical index. It is defined as the sum of all distances
between the vertices of a graph G.

Fullerenes are zero-dimensional nanostructures which
were discovered experimentally in 1985.” They are carbon-
cage molecules in which a number of carbon atoms are
bonded in a nearly spherical configuration. For a given
fullerene, F, let p, h, n and m be the number of pentagons,
hexagons, carbon atoms and bonds between them. Because
each atom lies in exactly three faces and each edge lies in
two faces, the number of atoms is n = (5p+6h)/3, the number
of edges is m = (5p+6h)/2 = 3/2n and the number of faces is
f =p + h. From Euler’s formula, n — m + f = 2, we can
deduce that (5p+6h)/3 — (Spt6h)/2 + p + h=2 and that p =
12, n =2h + 20 and m = 3h + 30. This outcome implies that
molecules of this type, which are made entirely of n carbon
atoms, have 12 pentagonal faces and (n/2 — 10) hexagonal
faces; it also implies that n#22 is a natural number equal to
or greater than 20"

Throughout this paper, the word graph means a simple
connected graph. The vertex and edge sets of graph G are
denoted by V(G) and E(G), respectively. The eccentric con-
nectivity index of molecular graph G, £(G), was proposed by
Sharma, Goswami and Madan.""! It is defined as &) =
2 evo dega(u).ec(u), where dega(x) denotes the degree of

*Corresponding author: alir.ashrafi@gmail.com

vertex x in G and eg(u)= Max {d(x,u) | x € V(G) }.** The
radius and diameter of G are defined as the minimum and
maximum eccentricity among vertices of G, respectively.

We now define the modified eccentric connectivity (ME(C))
polynomial of graph G as A(Gx) =Y. vayia(@x™"
where ng(a) is the sum of the degrees of the neighbors of ver-
tex a. As a result, MEC index is the first derivative of this
polynomial for x = 1. For example, if K, denotes the com-
plete graph on n vertices, then, for every v e V(K,), deg(v)
=n—1 and &s(v) = 1. Hence, A(GXx)=(n— 1)22ae noX =
n(n—1)’x.

Throughout this paper, we use standard notation taken
mainly from a standard book of graph theory. Basic compu-
tational techniques and background materials can be found
in the references.”"”

2. MAIN RESULTS AND DISCUSSION

The goal of this paper is to compute the MEC polynomial
of some classes of fullerenes. To do this, we begin with a
result which is crucial in the paper.

Lemma 1. The MEC( Polynomial of a k-regular graph is
2 EG a
AGX) =K cveX -
With Lemma 1, the MEC polynomial of a fullerene can be
easily represented as

AG x)= 9Za e V(G)X

Table 1 shows the computations of some exceptional cases
of the MEC polynomial of Cisp fullerenes (Fig. 1). For
n>10, we get Theorem 2.

Theorem 2. The MEC polynomial of Ciz., fullerenes for
n>10 is computed as follows:

E(,(a)

n-1
A(Ciapi2,X) = 54Xn+36Xn+1%+72X2n.
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Proof. Figure 1 confirms the possibility of the vertex set
being partitioned into three subsets: A, B and C. As shown in
Figure 1, subset A contains all the vertices of the central
octagon, subset B contains all the vertices of the outer hexa-
gon of Ciana, and subset C = V(Cianiz) — AU B. Therefore,

Vertices €6(X) No.
The Type 1 Vertices 2n
The Type 2 Vertices n 6
Other Vertices n+i(l1<i<n) 12

we have the following calculations.
With these calculations and Figure 2, the theorem 2 is proved.

others

Fig. 1. The molecular graph of the fullerene C2n12.

Some exceptional cases are given in Table 1.

Corollary 3. Consider the fullerene graph Ciznie. Then
A(Cran2) = 540" + 144n.

Consider the Cin:4 fullerene depicted in Figure 3. Table 2
shows the computations of some exceptional cases of the
MEC polynomials. When n> 8, we have the following gen-
eral formula:

Theorem 4. The MEC polynomial of a Ci,,4 fullerene is
computed as follows:
n—1
A(Cpomarx) = 108x™! % +36x2"!
Proof. Figure 4 shows that there are two types of vertices:
the vertices of the central pentagons and the vertices of

Vertices g6(X) No.
The Type 1 Vertices 2n+1 4
Other Vertices n+i(l<i<n+l1) 12

Ci2nt4. Obviously, we have:

With these calculations and Figure 3, the theorem is
proved.

Some exceptional cases are given in Table 2.

Corollary 5. The MEC index of a Ca,+4 fullerene is com-
puted as follows:

A(Cianis) = 162n” + 180n + 36.

Table 3 shows the computations of some exceptional cases
of the MEC polynomial of Cisn10 fullerenes (Fig. 5). For
n> 14, we get the following general formula:

Theorem 6. The MEC polynomial of a Cis,10 fullerene for
n>14 is computed as follows:

A(C18n+10,x) =

162x" % x X1 135(x°"+x™" ) +81x” " P+ 63x™"
Fig. 2. A maximum path for computing eg(u) and (v) in Ciznia. x—1
Table 1. Some exceptional cases of Cian:, fullerene
Fullerenes EC Polynomials

Cas 216x°+18x°

Cs 342x’

Cso 108x’+306x*+36x’

Ce2 216x*+216x"+126x"

Co 108x*+216x°+162x'*+108x"'+72x '

Css 216x°+162x"*+108x"'+108x *+108x*+72x"*

Cos 36x"+54x "+36x " +36x +36x +36x +36x +24x 0

Cio 54x'+36x+36x +36x +36x +36x +36x +36x T+ 24x"
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Table 2. Some exceptional cases of Cin4 fullerene

Fullerenes Modified eccentric connectivity polynomials
Cas 36x° + 48x°
Cao 108x” + 12x°
Cs, 36x" + 96x° + 24x°
Ces 72x% + 72%° + 36%"0+ 12x"
Cr 36x° + 72x” +362x'0 + 36x'" + 36x"7 + 12x"
Css 72x° +36x'" + 36x" +36x"> +36x" +36x" + 12x"”

Other Vertices

Fig. 3. The molecular graph of the fullerene Czy.s.
X =< < 7 \\0
a®a®a®a
%% 2e2

Fig. 4. A Maximal path for calculation of €5(u) and g6(v) in C2n:a.

Table 3. Some exceptional cases of Cigni1o fullerene

Proof. Figure 6 shows that there are four types of vertices
of fullerene graph Cisq+10. Obviously, we have:

Vertices ecc(x) No.
The Type 1 Vertices 2n+3 7
The Type 2 Vertices 2n+2 9
The Type 3 Vertices 2n,2n+1 15
Other Vertices n+i(2in-1) 18

With these calculations and Figure 5, the theorem is
proved.
Some exceptional cases are given in Table 3:

Corollary 7. The MEC index of Cigy10 is computed as
A(Cisnii0) = 243n° — 117n + 189.

Fig. 5. Maximal path for calculation of ec(u) and (V) in Cign+10.

Fullerenes Modified eccentric connectivity polynomials
Cs 201x'%+45x"
Cioo 54x'+150x"+66x *+30x "
Cus 108x"+117x*+63x*+39x*+27x "
Ciss 54x"+108x+81x+63x ' *+45x *+36x *+21x "
Ciss 108x*+81x"*+63x"*+54x*+63x *+45x"+27x *+21x"
Cin 54x"*+81x *+63x " +54x *+63x'+54x T +45x ¥ +45x + 27x* +21%°
C 190 81x"+63x+54x *+72x " +54x T+54x 3 +54x P +45x° +45x> 272 1%
Caos 27x*+63x +54x " +72x +54x T+54x *+54x "+ 547+ 54x7 '+ 4557+ 4557 H27xH21%7
Cazs 63x " 54x " +72x " +54x T+54x 54X +54x7 54X +H5 4K 54X A5 45X 2T 2 1K
Cau 36X +72x +54x T +54x P +54x 54X +54K7 54X+ AT 54X 54X HASX +45KT 27X +21%
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Fig. 6. The molecular graph of the fullerene C,gy+10.
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