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A Study of Fullerenes by MEC Polynomials
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The modified eccentric connectivity polynomial of a molecular graph, G, is defined as Λ(G,x) =
 where εG(a) is the eccentricity of vertex a and nG(a) is the sum of the degrees of its neigh-

borhoods. In this paper, the polynomial for three infinite classes of fullerenes is computed.
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1. INTRODUCTION

A topological index is a graphic invariant used in a struc-

ture property correlations. Topological indices defined by the

distance function d(-,-) are called distance-based topological

indices. Here for arbitrary vertices x and y, the distance

d(x,y) is defined as the length of a minimal path connecting

x and y. The Wiener index
[1]
 is the first distance-based topo-

logical index. It is defined as the sum of all distances

between the vertices of a graph G.

Fullerenes are zero-dimensional nanostructures which

were discovered experimentally in 1985.
[2]
 They are carbon-

cage molecules in which a number of carbon atoms are

bonded in a nearly spherical configuration. For a given

fullerene, F, let p, h, n and m be the number of pentagons,

hexagons, carbon atoms and bonds between them. Because

each atom lies in exactly three faces and each edge lies in

two faces, the number of atoms is n = (5p+6h)/3, the number

of edges is m = (5p+6h)/2 = 3/2n and the number of faces is

f = p + h. From Euler’s formula, n – m + f = 2, we can

deduce that (5p+6h)/3 – (5p+6h)/2 + p + h = 2 and that p =

12, n = 2h + 20 and m = 3h + 30. This outcome implies that

molecules of this type, which are made entirely of n carbon

atoms, have 12 pentagonal faces and (n/2 − 10) hexagonal

faces; it also implies that  is a natural number equal to

or greater than 20.
[3]

Throughout this paper, the word graph means a simple

connected graph. The vertex and edge sets of graph G are

denoted by V(G) and E(G), respectively. The eccentric con-

nectivity index of molecular graph G, ξ(G), was proposed by

Sharma, Goswami and Madan.
[4]
 It is defined as ξ(G) =

Σ degG(u).εG(u), where degG(x) denotes the degree of

vertex x in G and εG(u)= Max{d(x,u) | }.
[5-8]

 The

radius and diameter of G are defined as the minimum and

maximum eccentricity among vertices of G, respectively.

We now define the modified eccentric connectivity (MEC)

polynomial of graph G as Λ(G,x) =

where nG(a) is the sum of the degrees of the neighbors of ver-

tex a. As a result, MEC index is the first derivative of this

polynomial for x = 1. For example, if Kn denotes the com-

plete graph on n vertices, then, for every , deg(v)

= n – 1 and εG(v) = 1. Hence, Λ(G,x) = (n − 1)
2

 =

.

Throughout this paper, we use standard notation taken

mainly from a standard book of graph theory. Basic compu-

tational techniques and background materials can be found

in the references.
[9-13]

2. MAIN RESULTS AND DISCUSSION

The goal of this paper is to compute the MEC polynomial

of some classes of fullerenes. To do this, we begin with a

result which is crucial in the paper.

Lemma 1. The MEC polynomial of a k-regular graph is

Λ(G, x) = .

 With Lemma 1, the MEC polynomial of a fullerene can be

easily represented as 

Λ(G, x) = 9 .

Table 1 shows the computations of some exceptional cases

of the MEC polynomial of C12n+2 fullerenes (Fig. 1). For

, we get Theorem 2.

Theorem 2. The MEC polynomial of C12n+2 fullerenes for

 is computed as follows:

.
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Proof. Figure 1 confirms the possibility of the vertex set

being partitioned into three subsets: A, B and C. As shown in

Figure 1, subset A contains all the vertices of the central

octagon, subset B contains all the vertices of the outer hexa-

gon of C12n+2, and subset C = V(C12n+2) – A B. Therefore,

we have the following calculations.

With these calculations and Figure 2, the theorem 2 is proved.

Some exceptional cases are given in Table 1. 

Corollary 3. Consider the fullerene graph C12n+2. Then

Λ(C12n+2) = 54n
2
+ 144n.

Consider the C12n+4 fullerene depicted in Figure 3. Table 2

shows the computations of some exceptional cases of the

MEC polynomials. When , we have the following gen-

eral formula:

Theorem 4. The MEC polynomial of a C12n+4 fullerene is

computed as follows:

Λ(C12n+4,x) = 108x
n+1

.

Proof. Figure 4 shows that there are two types of vertices:

the vertices of the central pentagons and the vertices of

C12n+4. Obviously, we have:

With these calculations and Figure 3, the theorem is

proved. 

Some exceptional cases are given in Table 2. 

Corollary 5. The MEC index of a C12n+4 fullerene is com-

puted as follows: 

Λ(C12n+4) = 162n
2
+ 180n + 36.

Table 3 shows the computations of some exceptional cases

of the MEC polynomial of C18n+10 fullerenes (Fig. 5). For

, we get the following general formula:

Theorem 6. The MEC polynomial of a C18n+10 fullerene for

 is computed as follows:

Λ(C18n+10,x) =

∪ n 8≥

x
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Vertices εG(x) No.

The Type 1 Vertices 2n 8

The Type 2 Vertices n 6

Other Vertices n + i ( ) 121 i n≤ ≤

Table 1. Some exceptional cases of C12n+2 fullerene

Fullerenes EC Polynomials

C26 216x
5
+18x

6

C38 342x
7

C50 108x
7
+306x

8
+36x

9

C62 216x
8
+216x

9
+126x

10

C74 108x
8
+216x

9
+162x

10
+108x

11
+72x

12

C86 216x
9
+162x

10
+108x

11
+108x

12
+108x

13
+72x

14

C98 36x
9
+54x

10
+36x

11
+36x

12
+36x

13
+36x

14
+36x

15
+24x

16

C110 54x
10
+36x

11
+36x

12
+36x

13
+36x

14
+36x

15
+36x

16
+36x

17
+ 24x

18

Fig. 1. The molecular graph of the fullerene C12n+2.

Fig. 2. A maximum path for computing εG(u) and εG(v) in C12n+2.

Vertices εG(x) No.

The Type 1 Vertices 2n+1 4

Other Vertices n + i ( ) 121 i n 1+≤ ≤
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Proof. Figure 6 shows that there are four types of vertices

of fullerene graph C18n+10. Obviously, we have: 

With these calculations and Figure 5, the theorem is

proved.

Some exceptional cases are given in Table 3:

Corollary 7. The MEC index of C18n+10 is computed as

Λ(C18n+10) = 243n
2
− 117n + 189.

Table 2. Some exceptional cases of C12n+4 fullerene

Fullerenes Modified eccentric connectivity polynomials

C28 36x
5
 + 48x

6

C40 108x
7
 + 12x

8

C52 36x
7
 + 96x

8
 + 24x

9

C64 72x
8
 + 72x

9
 + 36x

10 
+ 12x

11

C76 36x
8
 + 72x

9
 + 362x

1
0 + 36x

11
 + 36x

12
 + 12x

13

C88 72x
9
 + 36x

10
 + 36x

11
 + 36x

12
 + 36x

13
 + 36x

14
 + 12x

15

Fig. 3. The molecular graph of the fullerene C12n+4.

Table 3. Some exceptional cases of C18n+10 fullerene

Fullerenes Modified eccentric connectivity polynomials

C82 201x
10
+45x

11

C100 54x
10
+150x

11
+66x

12
+30x

13

C118 108x
11
+117x

12
+63x

13
+39x

14
+27x

15

C136 54x
11
+108x

12
+81x

13
+63x

14
+45x

15
+36x

16
+21x

17

C154 108x
12
+81x

13
+63x

14
+54x

15
+63x

16
+45x

17
+27x

18
+21x

19

C172 54x
12
+81x

13
+63x

14
+54x

15
+63x

16
+54x

17
+45x

18
+45x

19
+ 27x

20
+21x

21

C 190 81x
13
+63x

14
+54x

15
+72x

16
+54x

17
+54x

18
+54x

19
+45x

20
+45x

21
+27x

22
+21x

23

C208 27x
13
+63x

14
+54x

15
+72x

16
+54x

17
+54x

18
+54x

19
+ 54x

20
+ 54x

21
+ 45x

22
+ 45x

23
 +27x

24
+21x

25

C226 63x
14
+54x

15
+72x

16
+54x

17
+54x

18
+54x

19
+54x

20
+54x

21
+54x

22
+54x

23
+45x

24
+45x

25
+27x

26
+21x

27

C244 36x
15
+72x

16
+54x

17
+54x

18
+54x

19
+54x

20
+54x

21
+54x

22
+54x

23
+54x

24
+54x

25
+45x

26
+45x

27
+27x

28
+21x

29

Fig. 4. A Maximal path for calculation of εG(u) and εG(v) in C12n+4.

Vertices ecc(x) No.

The Type 1 Vertices 2n+3 7

The Type 2 Vertices 2n+2 9

The Type 3 Vertices 2n,2n+1 15

Other Vertices n+i (2 i n-1) 18

Fig. 5. Maximal path for calculation of εG(u) and εG(v) in C18n+10.
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Fig. 6. The molecular graph of the fullerene C18n+10.


