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A Study of Fullerenes by MEC Polynomials
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The modified eccentric connectivity polynomial of a molecular graph, G, is defined as Λ(G,x) =
 where εG(a) is the eccentricity of vertex a and nG(a) is the sum of the degrees of its neigh-

borhoods. In this paper, the polynomial for three infinite classes of fullerenes is computed.

Keywords: Fullerene, modified eccentric connectivity polynomial, eccentric connectivity polynomial. 

na V G( )∈ G a( )x
ε
G
a( )

∑

1. INTRODUCTION

A topological index is a graphic invariant used in a struc-

ture property correlations. Topological indices defined by the

distance function d(-,-) are called distance-based topological

indices. Here for arbitrary vertices x and y, the distance

d(x,y) is defined as the length of a minimal path connecting

x and y. The Wiener index
[1]

 is the first distance-based topo-

logical index. It is defined as the sum of all distances

between the vertices of a graph G.

Fullerenes are zero-dimensional nanostructures which

were discovered experimentally in 1985.
[2]

 They are carbon-

cage molecules in which a number of carbon atoms are

bonded in a nearly spherical configuration. For a given

fullerene, F, let p, h, n and m be the number of pentagons,

hexagons, carbon atoms and bonds between them. Because

each atom lies in exactly three faces and each edge lies in

two faces, the number of atoms is n = (5p+6h)/3, the number

of edges is m = (5p+6h)/2 = 3/2n and the number of faces is

f = p + h. From Euler’s formula, n – m + f = 2, we can

deduce that (5p+6h)/3 – (5p+6h)/2 + p + h = 2 and that p =

12, n = 2h + 20 and m = 3h + 30. This outcome implies that

molecules of this type, which are made entirely of n carbon

atoms, have 12 pentagonal faces and (n/2 − 10) hexagonal

faces; it also implies that  is a natural number equal to

or greater than 20.
[3]

Throughout this paper, the word graph means a simple

connected graph. The vertex and edge sets of graph G are

denoted by V(G) and E(G), respectively. The eccentric con-

nectivity index of molecular graph G, ξ(G), was proposed by

Sharma, Goswami and Madan.
[4]

 It is defined as ξ(G) =

Σ degG(u).εG(u), where degG(x) denotes the degree of

vertex x in G and εG(u)= Max{d(x,u) | }.
[5-8]

 The

radius and diameter of G are defined as the minimum and

maximum eccentricity among vertices of G, respectively.

We now define the modified eccentric connectivity (MEC)

polynomial of graph G as Λ(G,x) =

where nG(a) is the sum of the degrees of the neighbors of ver-

tex a. As a result, MEC index is the first derivative of this

polynomial for x = 1. For example, if Kn denotes the com-

plete graph on n vertices, then, for every , deg(v)

= n – 1 and εG(v) = 1. Hence, Λ(G,x) = (n − 1)
2

 =

.

Throughout this paper, we use standard notation taken

mainly from a standard book of graph theory. Basic compu-

tational techniques and background materials can be found

in the references.
[9-13]

2. MAIN RESULTS AND DISCUSSION

The goal of this paper is to compute the MEC polynomial

of some classes of fullerenes. To do this, we begin with a

result which is crucial in the paper.

Lemma 1. The MEC polynomial of a k-regular graph is

Λ(G, x) = .

 With Lemma 1, the MEC polynomial of a fullerene can be

easily represented as 

Λ(G, x) = 9 .

Table 1 shows the computations of some exceptional cases

of the MEC polynomial of C12n+2 fullerenes (Fig. 1). For

, we get Theorem 2.

Theorem 2. The MEC polynomial of C12n+2 fullerenes for

 is computed as follows:

.

n 22≠

u V G( )∈

x V G( )∈

na V G( )∈ G a( )x
ε
G
a( )

∑

v V Kn( )∈

xa V G( )∈∑
n n 1–( )

2
x

k
2

x
ε
G
a( )

a V G( )∈∑

x
ε
G
a( )

a V G( )∈∑

n 10≥

n 10≥

Λ C12n 2+ x,( ) 54x
n

36x
n 1+ x

n 1–
1–

x 1–
----------------- 72x

2n
++=

*Corresponding author: alir.ashrafi@gmail.com



88 A. R. Ashrafi et al.: A Study of Fullerenes by MEC Polynomials

Electron. Mater. Lett. Vol. 6, No. 2 (2010)

Proof. Figure 1 confirms the possibility of the vertex set

being partitioned into three subsets: A, B and C. As shown in

Figure 1, subset A contains all the vertices of the central

octagon, subset B contains all the vertices of the outer hexa-

gon of C12n+2, and subset C = V(C12n+2) – A B. Therefore,

we have the following calculations.

With these calculations and Figure 2, the theorem 2 is proved.

Some exceptional cases are given in Table 1. 

Corollary 3. Consider the fullerene graph C12n+2. Then

Λ(C12n+2) = 54n
2

+ 144n.

Consider the C12n+4 fullerene depicted in Figure 3. Table 2

shows the computations of some exceptional cases of the

MEC polynomials. When , we have the following gen-

eral formula:

Theorem 4. The MEC polynomial of a C12n+4 fullerene is

computed as follows:

Λ(C12n+4,x) = 108x
n+1

.

Proof. Figure 4 shows that there are two types of vertices:

the vertices of the central pentagons and the vertices of

C12n+4. Obviously, we have:

With these calculations and Figure 3, the theorem is

proved. 

Some exceptional cases are given in Table 2. 

Corollary 5. The MEC index of a C12n+4 fullerene is com-

puted as follows: 

Λ(C12n+4) = 162n
2

+ 180n + 36.

Table 3 shows the computations of some exceptional cases

of the MEC polynomial of C18n+10 fullerenes (Fig. 5). For

, we get the following general formula:

Theorem 6. The MEC polynomial of a C18n+10 fullerene for

 is computed as follows:

Λ(C18n+10,x) =

∪ n 8≥

x
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Vertices εG(x) No.

The Type 1 Vertices 2n 8

The Type 2 Vertices n 6

Other Vertices n + i ( ) 121 i n≤ ≤

Table 1. Some exceptional cases of C12n+2 fullerene

Fullerenes EC Polynomials

C26 216x
5
+18x

6

C38 342x
7

C50 108x
7
+306x

8
+36x

9

C62 216x
8
+216x

9
+126x

10

C74 108x
8
+216x

9
+162x

10
+108x

11
+72x

12

C86 216x
9
+162x

10
+108x

11
+108x

12
+108x

13
+72x

14

C98 36x
9
+54x

10
+36x

11
+36x

12
+36x

13
+36x

14
+36x

15
+24x

16

C110 54x
10

+36x
11

+36x
12

+36x
13

+36x
14

+36x
15

+36x
16

+36x
17

+ 24x
18

Fig. 1. The molecular graph of the fullerene C12n+2.

Fig. 2. A maximum path for computing εG(u) and εG(v) in C12n+2.

Vertices εG(x) No.

The Type 1 Vertices 2n+1 4

Other Vertices n + i ( ) 121 i n 1+≤ ≤
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Proof. Figure 6 shows that there are four types of vertices

of fullerene graph C18n+10. Obviously, we have: 

With these calculations and Figure 5, the theorem is

proved.

Some exceptional cases are given in Table 3:

Corollary 7. The MEC index of C18n+10 is computed as

Λ(C18n+10) = 243n
2
− 117n + 189.

Table 2. Some exceptional cases of C12n+4 fullerene

Fullerenes Modified eccentric connectivity polynomials

C28 36x
5
 + 48x

6

C40 108x
7
 + 12x

8

C52 36x
7
 + 96x

8
 + 24x

9

C64 72x
8
 + 72x

9
 + 36x

10 
+ 12x

11

C76 36x
8
 + 72x

9
 + 362x

1
0 + 36x

11
 + 36x

12
 + 12x

13

C88 72x
9
 + 36x

10
 + 36x

11
 + 36x

12
 + 36x

13
 + 36x

14
 + 12x

15

Fig. 3. The molecular graph of the fullerene C12n+4.

Table 3. Some exceptional cases of C18n+10 fullerene

Fullerenes Modified eccentric connectivity polynomials

C82 201x
10

+45x
11

C100 54x
10

+150x
11

+66x
12

+30x
13

C118 108x
11

+117x
12

+63x
13

+39x
14

+27x
15

C136 54x
11

+108x
12

+81x
13

+63x
14

+45x
15

+36x
16

+21x
17

C154 108x
12

+81x
13

+63x
14

+54x
15

+63x
16

+45x
17

+27x
18

+21x
19

C172 54x
12

+81x
13

+63x
14

+54x
15

+63x
16

+54x
17

+45x
18

+45x
19

+ 27x
20

+21x
21

C 190 81x
13

+63x
14

+54x
15

+72x
16

+54x
17

+54x
18

+54x
19

+45x
20

+45x
21

+27x
22

+21x
23

C208 27x
13

+63x
14

+54x
15

+72x
16

+54x
17

+54x
18

+54x
19

+ 54x
20

+ 54x
21

+ 45x
22

+ 45x
23

 +27x
24

+21x
25

C226 63x
14

+54x
15

+72x
16

+54x
17

+54x
18

+54x
19

+54x
20

+54x
21

+54x
22

+54x
23

+45x
24

+45x
25

+27x
26

+21x
27

C244 36x
15

+72x
16

+54x
17

+54x
18

+54x
19

+54x
20

+54x
21

+54x
22

+54x
23

+54x
24

+54x
25

+45x
26

+45x
27

+27x
28

+21x
29

Fig. 4. A Maximal path for calculation of εG(u) and εG(v) in C12n+4.

Vertices ecc(x) No.

The Type 1 Vertices 2n+3 7

The Type 2 Vertices 2n+2 9

The Type 3 Vertices 2n,2n+1 15

Other Vertices n+i (2 i n-1) 18

Fig. 5. Maximal path for calculation of εG(u) and εG(v) in C18n+10.
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Fig. 6. The molecular graph of the fullerene C18n+10.


