Low Damage and Anisotropic Dry Etching of High-k Dielectric HfO₂ Films in Inductively Coupled Plasmas

Jong Cheon Park,¹ Sungu Hwang,² Jong-Man Kim,¹ Jin Kon Kim,¹ Jun Hyuk Seo,³ Duck-Kyun Choi,³ Hee Soo Lee,⁴ and Hyun Cho^{1,*}

¹Department of Nanomechatronics Engineering, Pusan National University, Gyeongnam 627-706, Korea ²Department of Nanomedical Engineering, Pusan National University, Gyeongnam 627-706, Korea ³Department of Materials Science and Engineering, Hanyang University, Seoul 133-791, Korea ⁴School of Materials Science & Engineering, Pusan National University, Busan, 609-735, Korea

The etch characteristics of high-*k* dielectric HfO₂ films and the etch selectivity for HfO₂ over Si in fluorineand chlorine-based inductively coupled plasmas have been studied. Fluorine-based ICP discharges produced practical and controllable etch rates and the etched HfO₂ surfaces sustained similar or better RMS roughness values than that of the unetched control sample under most of the conditions examined. Anisotropic pattern transfer with a vertical sidewall profile ($\theta = 97^{\circ}$) was performed in CF₄/Ar ICP discharges and no significant change in the dielectric property of HfO₂ films was detected. 5Cl₂/10O₂ ICP discharges produced high etch selectivities > 6.3 (max. ~7.6) for HfO₂ over Si.

Keywords: low damage, anisotropic dry etching, HfO₂ films, inductively coupled plasmas, surface morphology, etch selectivity

1. INTRODUCTION

As dimensions of structures continue to be reduced in complementary metal-oxide-semiconductor (CMOS) devices, gate width is expected to be scaled down to less than 50 nm, and gate oxide thickness is also projected to be reduced down to 2 nm. The technological challenge has continued for the growing of ultrathin, high quality SiO₂ or SiON films that can sustain the gate capacitance without increasing the gate leakage current. However, SiO₂ and SiON gate dielectrics cannot meet the requirements of low standby power CMOS devices due to their high gate current leakage characteristics for thicknesses below 20 Å. Therefore, the ultimate solution would rely on high dielectric constant (k) materials. High-k (> 20) dielectric materials can potentially extend scaling to an equivalent oxide thickness in the sub-10 Å regime.^[1-5] In addition to high-k values, the choices of gate dielectrics for advanced CMOS devices are determined by a set of criteria such as the thermodynamic stability at the dielectric-Si interface, ability to achieve low interface state defect densities, diffusion resistance to dopants and impurities, and availability of conformal deposition over morphological features.

Many metal oxides and metal silicates with high dielectric

constants (8 < k < 80) including Al₂O₃,^[6] Ta₂O₅,^[7,8] TiO₂,^[9,10] ZrSiO₄,^[11] Zr_{1-x}Al_xO_y,^[5,12] ZrSi_xO_y,^[13] have been proposed as gate dielectric materials for advanced CMOS devices; HfO₂ is one of the most promising candidates due to its modest dielectric constant ($k \approx 25$) and thermal stability at the interface with Si.^[14,15] In order to integrate HfO₂ gate dielectric with conventional CMOS fabrication processes, a precise and controllable dry etching is essential to reduce the contact resistance and ensure reliable device performance. Dry etching of HfO₂ dielectric layer using high density plasma techniques^[16,17] is required to satisfy the requirements of smooth surface morphology, residue-free state, anisotropy, and selectivity to Si. Norasetthekul et al. reported Cl₂-, SF₆- and CH₄-based inductively coupled plasma (ICP) etching of HfO₂ films; they achieved a maximum etch selectivity of ~ 5 for HfO₂ over Si in the Cl₂/Ar discharges.^[18] Sha et al. presented an electron cyclotron resonance (ECR) plasma etching of HfO₂ in halogen chemistries with a marginal selectivity of ~1.6 for HfO2 over Si at high microwave conditions.^[19] Using Cl₂/HBr/O₂-based ICP chemistries, Maeda et al. obtained a maximum etch selectivity of ~ 2 for HfO₂ over SiO₂ under the condition in which an etch rate of ~ 20 Å/ min for HfO2 was produced.^[20] Nakamura et al. also reported the ECR plasma etching of HfO2 and a maximum etch selectivity of >10 for HfO₂ over Si and SiO₂ with an etch rate of ~ 50 Å/min for HfO₂.^[21] Despite the results of these previous works, it is still required to establish the etch process win-

^{*}Corresponding author: hyuncho@pusan.ac.kr

dow in which high etch selectivity for HfO_2 over Si with practical and controllable etch rates can be achieved. Moreover, no attention has been paid to low damage etching of HfO_2 film, which prevents the degradation in dielectric property, which prevention is critical in the fabrication of novel floating gate MOSFET devices. In this paper, we report on low damage, anisotropic ICP etching of HfO_2 films with high etch selectivity to Si, and practical and controllable etch rates. The effect of plasma composition, ion flux and ion energy on the material etch rate, surface morphology and etch selectivity for HfO_2 over Si were examined.

2. EXPERIMENTAL PROCEDURE

HfO₂ films were deposited by atomic layer deposition (ALD) onto 4" Si substrates; typical film thicknesses were ~500 Å. HfO₂ films were patterned with either AZ 4330 photoresist or ~1000 Å thick nickel layer. High density plasma etching was performed in a planar inductively coupled plasma source operating at 13.56 MHz and power up to 1000 W; the samples were thermally bonded to an Si carrier wafer that was mechanically clamped to an He backsidecooled, rf-powered (13.56 MHz, up to 450 W) chuck. Fluorine- (CF₄ and SF₆) and chlorine- (BCl₃ and Cl₂) based inductively coupled plasmas were employed to etch HfO₂ films. Ar or O₂ gas was used as an additive gas and process pressure was varied from 2-20 mTorr, with a gas load of 15 standard cubic centimeters per minute (sccm). The etch rates were measured by stylus profilometry after removal of the mask materials. The surface morphology was characterized by tapping mode atomic force microscopy (AFM) and the anisotropy of etched features was examined by field-emission scanning electron microscopy (FE-SEM). The effect of plasma etching on the dielectric property was examined by comparison of the C-V characteristics of the etched HfO₂ films with those of the unetched control sample.

3. RESULTS AND DISCUSSION

Figure 1 shows the influence of plasma composition on the HfO₂ etch rate in inductively coupled plasma CF₄/Ar and SF₆/Ar discharges at 500 W source power, 200 W rf chuck power and 2 mTorr pressure. In the CF₄/Ar plasma chemistry, the HfO₂ etch rate initially increases as CF₄ is added and reaches ~760 Å/min; rate then decreases beyond 67% CF₄ content. The decrease in the HfO₂ etch rate at a high CF₄ percentage is attributed to the build-up of a fluorinated selvedge layer that is not efficiently removed by the lower ion energy and ion density under Ar-deficient conditions. By contrast, the HfO₂ etch rate increases continuously as the volume ratio of SF₆ in the gas load increases; this indicates the presence of the chemical component of the etching. Under these conditions the neutral-to-ion ratio in the plasma is maintained

Fig. 1. HfO₂ etch rates as a function of plasma composition in CF_4/Ar and SF_6/Ar ICP discharges (500 W source power, 200 W rf chuck power, 2 mTorr).

within the range of optimal values that provide sufficient fluorine surface coverage and reaction, and subsequent etch product desorption.

The effect of rf chuck power on the HfO₂ etch rate in 300 W ICP source power, 2 mTorr 10CF₄/5Ar and 10SF₆/5Ar plasmas is shown in Fig. 2. For SF₆/Ar discharges, the HfO₂ etch rate shows a strong dependence on the rf chuck power, indicating the presence of the physical component of the etching. The HfO₂ etch rate monotonically increases as the rf chuck power increases due to the enhanced ion-assisted desorption of the hafnium fluoride etch products. A maximum etch rate of ~820 Å/min was obtained at a low ICP source power (300 W) and a relatively high rf chuck power (300 W) condition for SF₆/Ar ICP discharges. For CF₄/Ar discharges, the increase in rf chuck power does not produce a noticeable increase in the HfO₂ etch rate above 150 W. At rf chuck power conditions higher than 150 W in the CF₄/Ar, the density of the reactive chlorine involved in the reaction with the

Fig. 2. HfO₂ etch rates as a function of rf chuck power in $10CF_4/5Ar$ and $10SF_6/5Ar$ ICP discharges (300 W source power, 2 mTorr).

surface atoms seem to be limited to some extent by the ionenhanced desorption of the reactive fluorine species from the surface.

Figure 3 presents the AFM scan images of the HfO₂ surfaces etched in 10CF₄/5Ar ICP discharges; Fig. 4 shows the normalized roughness values acquired from the HfO₂ surfaces etched in the fluorine-based ICP discharges as a function of ICP source power (top) and rf chuck power (bottom) at fixed plasma composition and pressure. In each case, the etch depth was maintained at ~250 Å and the as-deposited root-mean-square (RMS) roughness was ~1.75 nm. A very smooth surface morphology was obtained at a relatively high rf chuck power (300 W) condition in the 10SF₆/5Ar discharges; this situation was most likely due to the activated ion-enhanced removal of metal fluoride etch products or sharp features from the surface. The etched surfaces of HfO₂ show similar or better RMS roughness values than that of the unetched control sample under most of the conditions examined. These data show that there is a wide process window for maintaining high quality surfaces with CF_4/Ar and $SF_6/$ Ar ICP discharges.

Figure 5 shows SEM micrographs of features etched into HfO_2 films using $10CF_4/5Ar$ ICP discharges with a 300 W source power, 200 W rf chuck power, and 2 mTorr pressure. Note that the Ni mask layer is still in place. The etched surface shows a smooth morphology, as shown in Fig. 4; an anisotropic pattern transfer with a vertical sidewall profile (θ

= 97°) was performed in CF₄/Ar ICP discharges.

In some microelectronic device fabrication processes, e.g. magnetic tunnel junction devices (MJTs) and variable capacitors in MEMS devices, the etched high-k dielectric layer is required to sustain the same dielectric property as the unetched surface. In order to examine the effect of plasma etching on the dielectric property of HfO2 films, HfO2 films of 2×2 cm² were etched in 10CF₄/5Ar ICP discharges (300 W source power, 2 mTorr) with different rf power conditions, and the C-V characteristics of the etched HfO₂ films was compared with the unetched control sample. The thicknesses of the etched HfO₂ films were maintained constant at ~300 Å to compensate for the thickness effect. The C-V curves of as-deposited and etched HfO₂ films measured in the range of -4 V to 4 V (1 MHz frequency) are shown in Fig. 6. The etched HfO_2 films present capacitance values similar to those of the as-deposited sample with a deviation of $\leq \pm 10\%$, but this is tolerable when we take into account the typical error in etch depth uniformity ($\pm 5-10\%$ in our case). Also, no noticeable change in the flat-band voltage due to the variation in the positive fixed charge was monitored for the etched HfO2 films, indicating detectable ion damage was not introduced with plasma etching.

Figure 7 shows the HfO_2 and Si etch rates (top) and etch selectivity for HfO_2 over Si (bottom) as a function of source power in Cl_2/O_2 ICP discharges at a fixed plasma composition, rf chuck power (200 W) and pressure (2 mTorr). HfO_2

Fig. 3. AFM scan images of HfO₂ films etched in 10SF₆/5Ar ICP discharges (300 W source power, 2 mTorr).

Fig. 4. Dependence of HfO_2 normalized etched surface roughness on source power (top) and rf chuck power (bottom) in $10CF_4/5Ar$ and $10SF_6/5Ar$ ICP discharges (2 mTorr).

etch rate increases as source power increases and reaches ~150 Å/min; it then slightly decreases beyond 500 W, indicating that the etch reaction is limited by the ion-assisted removal of hafnium chloride etch products from the surface. On the contrary, very low etch rates were obtained for Si and it was found that increasing source power does not produce a significant enhancement in Si etch rate, which leads to high etch selectivities (> 6.3) for HfO₂ over Si. The behavior of Si etch rate is assumed to have a close relation with Si-O bond formation on the surface under these conditions. Under the oxygen-rich plasma composition in Cl₂/O₂ ICP discharges, volatile SiCl_x etch products are expected to be formed by the surface reaction between the reactive chlorine neutrals and Si, but some of the reactive oxygen neutrals in the plasma may react with the surface atoms of Si. Since the Si-O bond is much stronger than the Si-Cl bond (comparing the bond strength: Si-O bond: 799.6 kJ/mol; Si-Cl: 406.6 kJ/mol), it is energetically more favorable for Si to bond to O than to bond to Cl.^[22,23] Once non-volatile SiO_x reaction products are partially formed on the Si surface, the formation of volatile

Fig. 5. SEM micrographs of features etched into HfO_2 using $10CF_4/$ 5Ar ICP discharges (300 W source power, 200 W rf chuck power, 2 mTorr).

Fig. 6. C-V characteristics of HfO_2 films etched with different rf chuck power conditions in $10CF_4/5Ar$ ICP discharges (300 W source power, 2 mTorr).

SiCl_x etch products could be disturbed or the etching could be retarded by the removal of non-volatile SiO_x products from the surface. A maximum etch selectivity of \sim 7.6 for HfO₂ over Si was obtained in 5Cl₂/10O₂ ICP discharges at a

Fig. 7. HfO₂ and Si etch rates (top), and etch selectivity for HfO₂ over Si as a function of source power in $5Cl_2/10O_2$ ICP discharges (200 W rf chuck power, 2 mTorr).

700 W source power, 200 W rf chuck power, and 2 mTorr pressure.

Summary and Conclusions

In the plasma etching of high-k dielectric HfO₂ films for advanced microelectronic device applications, it is necessary to satisfy the requirements of smooth surface morphology, residue-free state, anisotropy, and selectivity to Si. The ALD-deposited HfO₂ films were etched in chlorine- and fluorine-based inductively coupled plasmas, and the effect of the process parameters on the etch rate, surface morphology and etch selectivity for HfO2 over Si was examined. Practical and controllable etch rates were obtained for both chemistries and a maximum etch rate of ~820 Å/min was obtained at a low ICP source power (300 W) and a relatively high rf chuck power (300 W) condition for SF₆/Ar ICP discharges. HfO₂ surfaces etched in fluorine-based ICP discharges show RMS roughness values similar to or better than that of the unetched control sample under most of the conditions examined. The etched HfO₂ films present capacitance values similar to those of the as-deposited sample; no noticeable change in the flat-band voltage was monitored, indicating

that detectable ion damage was not introduced with plasma etching. High etch selectivities > 6.3 (max. \sim 7.6) for HfO₂ over Si were obtained in 5Cl₂/10O₂ ICP discharges.

ACKNOWLEDGMENTS

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (D00486).

REFERENCES

- 1. G. D. Wilk, R. M. Wallace, and J. M. Anthony, *J. Appl. Phys.* **89**, 5243 (2001).
- 2. *The International Technology Roadmap of Semiconductors* (ed., International Sematech), Austin, TX (2001).
- H. R. Huff, C. A. Richter, M. L. Green, G. Lucovsky, and T. Hattori, *Ultrathin SiO₂ and High-K Materials for ULSI Gate Dielectrics, Vol.* 567, Materials Research Society, Warrendale, PA (1999).
- 4. B. Brar, G. D. Wilk, and A. C. Seabaugh, *Appl. Phys. Lett.* **69**, 2728 (1996).
- K. Pelhos, V. M. Donnelly, A. Kornblit, M. L. Green, R. B. Van Dover, L. Manchanda, Y. Hee, M. Morris, and E. Bower, *J. Vac. Sci. Technol. A* 19, 1361 (2001).
- L. Manchanda, W. H. Lee, J. E. Bower, F. H. Baumann, W. L. Brown, C. J. Case, R. C. Keller, Y. O. Kim, E. J. Laskowski, M. D. Morris, R. L. Opila, P. J. Silverman, T. W. Sorsch, and G. R. Weber, *Proc. Tech. Dig. Int. Electron Devices Meet.* 605 (1998).
- D. Park, Y. C. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, *IEEE Electron. Dev. Lett.* 19, 441 (1998).
- G. B. Alers, D. J. Weider, Y. Chabal, H. C. Lu, E. P. Guser, E. Garfunkel, T. Gusrafson, and R. S. Vodahl, *Appl. Phys. Lett.* 73, 1517 (1998).
- S. H. Campbell, D. C. Gilmer, X. Wang, M. Hsieh, H. S. Kim, W. L. Gladfeter, and J. Yan, *IEEE Trans. Electron. Dev.* 44, 104 (1997).
- 10. H. S. Kim, S. A. Campbell, and D. C. Gilmer, *IEEE Electron. Dev. Lett.* 18, 465 (1997).
- G. D. Wilk and R. M. Wallace, *Appl. Phys. Lett.* 76, 112 (2000).
- 12. Y. Ma, Y. Ohno, L. Stecher, D. R. Evans, S. T. Hsu, *Proc. Tech. Dig. Int. Electron Devices Meet.* 149 (1999).
- 13. G. D. Wilk, R. M. Wallace, and J. M. Anthony, *J. Appl. Phys.* 87, 484 (2000).
- C. H. Choi, S. J. Rhee, T. S. Jeon, N. Lu, J. H. Sim, R. Clark, M. Niwa, and D. L. Kwong, *Tech. Dig. Int. Electron Devices Meet.* 857 (2002).
- L. Kang, B. H. Lee, W. Qi, Y. Jem, R. Nich, S. Gopalan, K. Onishi, and J. C. Lee, *IEEE Electron. Dev. Lett.* **21**, 181 (2000).

- J. C. Park, S. Hwang, J. -M. Kim, J. K. Kim, E. -H. Kim, Y. -G. Jung, and H. Cho, *Electron. Mater. Lett.* 5, 205 (2009).
- 17. T. S. Kim, H. Y. Yang, S. -S. Choi, T. S. Jeong, S. Kang and K. -H. Shim, *Electron. Mater. Lett.* **5**, 43 (2009).
- S. Norasetthekul, P. Y. Park, K. H. Baik, K. P. Lee, J. H. Shin, B. S. Jeong, V. Shishodia, D. P. Norton, and S. J. Pearton, *Appl. Surf. Sci.* 187, 75 (2002).
- 19. L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 22, 88 (2004).
- T. Maeda, H. Ito, R. Mitsuhashi, A. Horiuchi, T. Kawahara, A. Muto, T. Sasaki, K. Torii, and H. Kitajima, *Jpn. J. Appl. Phys.* 43, 1864 (2004).
- K. Nakamura, T. Kitagawa, K. Osari, K. Takahashi, and K. Ono, *Vacuum* 80, 761 (2006).
- 22. I. Bello, W. H. Chang, and W. M. Lau, *J. Appl. Phys.* **75**, 3092 (1994).
- 23. L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 22, 88 (2004).