The Enhancement of Cycle-Life Performance in LiCoO₂ Thin Film by Partial Al₂O₃ Coating

Yuhong Oh, Donggi Ahn, Seunghoon Nam, Chunjoong Kim, Joon-Gon Lee, and Byungwoo Park*

Department of Materials Science and Engineering, Research Center for Energy Conversion and Storage, and Research Institute of Advanced Materials, Seoul National University, Seoul 151-744, Korea

The electrochemical properties of Al_2O_3 -coated LiCoO₂ thin films with a partial coating coverage were investigated. The Al_2O_3 -coated LiCoO₂ films showed better cycle-life performances with 100% coating coverage. In addition, the Al_2O_3 -coating layer with a partial coverage of 50% clearly enhanced the electrochemical properties of LiCoO₂ cathodes even at 60°C. The Al_2O_3 -coating layer suppresses Co dissolution from LiCoO₂, consequently enhancing the cycle-life performance.

Keywords: Li-ion battery, Al₂O₃, LiCoO₂, nanoscale, coating

1. INTRODUCTION

Commercial rechargeable lithium-ion batteries use LiCoO₂ cathodes extensively due to their high energy density and good cycle-life performance.^[1] However, when charged to 4.4 V or above, this material shows relatively severe capacity fading after extended cycling. This is attributed to structural changes in LiCoO₂,^[2] cobalt dissolution into the electrolyte,^[3] oxygen loss,^[4] and the formation of electrochemically resistive surface films.^[5]

Surface modification through coating with various metal oxides and metal phosphates is an effective method to resolve the problem of severe capacity fading at high cutoff voltages.^[6-13] It has been found that even partial or non-uniform metal-oxide coating also enhances the cycle-life performance of cathode materials.^[14,15] In this article, the effects of Al₂O₃-coating coverage on the electrochemical properties of thin-film LiCoO₂ are reported.

2. EXPERIMENTS

The LiCoO₂ thin films were prepared by using magnetron sputtering on thermally-oxidized Si (100) substrates. All the films were then annealed at 700°C in an oxygen atmosphere for 30 min, and the Al₂O₃ thin films were deposited on the LiCoO₂ films by the reactive sputtering of an Al target with a coating coverage of 0%, 50%, or 100%. After the Al₂O₃ deposition, the coated and uncoated samples were annealed at 400°C for 2 h.

To evaluate the electrochemical properties of both the bare and the Al_2O_3 -coated LiCoO₂ thin films, beaker-type half cells were used. A Li-metal sheet was used as a counter/reference electrode, ~1 cm² of active area LiCoO₂ cathode as a working electrode, and 1 M LiPF₆ in ethylene carbonate/ diethyl carbonate as the electrolyte. The cells were cycled over the voltage range of 4.4 and 2.75 V at 25°C and 60°C.

3. RESULTS AND DISCUSSION

The Al_2O_3 -coated LiCoO₂ thin film electrodes with 0%, 50%, or 100% coverage were cycled between 4.4 and 2.75 V with an applied current density of 0.4 mA/cm² (= 12 C) at 25°C. The cycle-life performances of the bare and Al₂O₃coated films (with 50% and 100% coating coverage) are shown in Fig. 1, excluding the capacities of the constantvoltage mode. The Al₂O₃-coated LiCoO₂ films exhibit enhanced capacity retention with increased coating coverage. Even the Al₂O₃-coated LiCoO₂ with only 50% coverage retains up to ~33% of its initial charge capacity after 200 cycles, whereas the bare LiCoO₂ exhibits almost zero capacity. It was previously reported that an Al₂O₃ coating with a partial coverage of $\sim 40\%$ improved the capacity retention of LiCo_{0.94}Fe_{0.06}O₂.^[14] Oh *et al.* also reported that Al₂O₃-coated LiCoO₂ powders even with ~14% coverage enhanced cyclelife performances.^[15] The improvement of capacity retention is observed more in the charging process than in the discharging.

Figure 2 illustrates the voltage profiles of the bare and Al_2O_3 -coated LiCoO₂ thin films with a coating coverage of 0%, 50%, or 100% at 25°C. Over 200 cycles, the profiles of bare LiCoO₂ films severely deteriorate. On the contrary,

^{*}Corresponding author: byungwoo@snu.ac.kr

Fig. 1. (Color) (a) The charge- and (b) discharge-capacity retention of bare and Al_2O_3 -coated LiCoO₂ thin films. The cells were cycled between 4.4 and 2.75 V at 0.4 mA/cm² (= 12 C) and 25°C.

Fig. 2. (Color) Voltage profiles of the (a) bare, and Al_2O_3 -coated $LiCoO_2$ films with (b) 50%, and (c) 100% surface coverage.

those of the Al_2O_3 -coated LiCoO₂ films during 200 cycles show better performances. For 100% Al_2O_3 -coated LiCoO₂ films, a slight increase of polarization is observed in the initial cycle. However, as the cycles continue, the polarization in the charge and discharge processes is not noticeable. Lith-

Fig. 3. (Color) (a) The charge- and (b) discharge-capacity retention of bare and Al_2O_3 -coated LiCoO₂ films with a different coverage. The cells were cycled between 4.4 and 2.75 V at 0.4 mA/cm² and 60°C.

ium-ion migration through the coating layer gets easier as the cycling goes on, and the coating layer is expected to act as a solid electrolyte.^[7,12,13] The characteristic profiles of the coated cathodes worsen as the coating coverage decreases from 100% to 50%.

The cycle-life performances at 60°C of the bare and Al₂O₃-coated LiCoO₂ thin films with different coverage ratios are represented in Fig. 3. The initial capacity and the capacity retention of the bare LiCoO₂ films appear to deteriorate at higher temperature. Dramatic degradation of bare LiCoO₂ films is observed, because more significant Co dissolution from the cathode occurs at 60°C than at 25°C. It has been reported that LiCoO₂ powders exhibit more intense Co dissolution at elevated temperatures, and this causes significant capacity loss in LiCoO₂ cathodes.^[8] The Al₂O₃-coated LiCoO₂ films with 50% coverage exhibit rapid capacity fading after ~130 cycles at 60°C. However, the initial capacity and the capacity retention of the Al₂O₃-coated LiCoO₂ at 60°C are better with 100% Al₂O₃-coating coverage. Similarly, the 100% coated-Al₂O₃ LiCoO₂ film shows excellent cycle-life performances even at higher temperature, compared with the uncoated-LiCoO₂ films.

Wang's group reported that alumina nanoparticles soaked

in an electrolyte improved the cycle-life performances of LiCoO₂.^[16] Whether a dispersion of alumina nanoparticles in electrolytes or a uniform Al₂O₃ coating on LiCoO₂ is more effective for enhancing cycle-life performance remains an open question. With surface modifications, the Al₂O₃-coating layer reduces the amount of direct HF attack, while preventing Li⁺ transport and electron conduction. However, alumina nanoparticles in an electrolyte cannot initially prevent the direct HF attack until the nanoparticles scavenge HF from the electrolyte. Myung *et al.* reported that the Al₂O₃-coated Li_{1.05}Ni_{0.4}Co_{0.15}Mn_{0.4}O₂ cathode material exhibited high electrochemical properties due to the HF scavenging of Al₂O₃ layer.^[17]

4. CONCLUSIONS

The electrochemical properties of Al_2O_3 -coated $LiCoO_2$ thin films with a different surface coverage of 0%, 50%, and 100% were studied. As discussed above, the $LiCoO_2$ films with even 50% coating coverage showed notably enhanced performances. However, details on the mechanisms of the scavenging effects need to be further identified.

ACKNOWLEDGEMENT

This work was supported by the ERC Program of MOST/ KOSEF (R11-2002-102-00000-0).

REFERENCES

- 1. J.-M. Tarascon and M. Armand, Nature 414, 359 (2001).
- 2. H. Wang, Y.-I. Jang, B. Huang, D. R. Sadoway, and Y.-M. Chiang, *J. Electrochem. Soc.* **146**, 473 (1999).
- 3. G. G. Amatucci, J. M. Tarascon, and L. C. Klein, Solid

State Ionics 83, 167 (1996).

- 4. S. Venkatrman and A. Manthiram, *Chem. Mater.* **14**, 3907 (2002).
- D. Aurbach, B. Markovsky, A. Rodkin, E. Levi, Y. S. Cohen, H.-J. Kim, and M. Schmidt, *Electrochim. Acta* 47, 4291 (2002).
- 6. J. Cho, Y. J. Kim, T.-J. Kim, and B. Park, *Angew. Chem. Int. Ed.* **40**, 3367 (2001).
- 7. Y. J. Kim, H. Kim, B. Kim, D. Ahn, J.-G. Lee, T.-J. Kim, D. Son, J. Cho, Y.-W. Kim, and B. Park, *Chem. Mater.* 15, 1505 (2003).
- Y. J. Kim, J. Cho, T.-J. Kim, and B. Park, J. Electrochem. Soc. 150, A1723 (2003).
- J.-G. Lee, C. Kim, B. Kim, D. Son, and B. Park, *Electron. Mater. Lett.* 2, 111 (2006).
- 10. Y. Oh, J.-G. Lee, B. Kim, and B. Park, *Electron. Mater. Lett.* **4**, 9 (2008).
- 11. J. Cho, Y.-W. Kim, B. Kim, J.-G. Lee, and B. Park, *Angew. Chem. Int. Ed.* **42**, 1618 (2003).
- B. Kim, C. Kim, D. Ahn, T. Moon, J. Ahn, Y. Park, and B. Park, *Electrochem. Solid-State Lett.* 10, A32 (2007).
- D. Ahn, C. Kim, J.-G. Lee, B. Kim, Y. Park, and B. Park, J. Mater. Res. 22, 688 (2007).
- N. Van Landschoot, E. M. Kelder, P. J. Kooyman, C. Kwakernaak, and J. Schoonman, *J. Power Sources* 138, 262 (2004).
- 15. S. Oh, J. K. Lee, D. Byun, W. I. Cho, and B. W. Cho, *J. Power Sources* **132**, 249 (2004).
- 16. J. Liu, N. Liu, D. Liu, Y. Bai, L. Shi, Z. Wang, L. Chen, V. Hennige, and A. Schuch, *J. Electrochem. Soc.* **154**, A55 (2007).
- S.-T. Myung, K. Izumi, S. Komaba, Y.-K. Sun, H. Yashiro, and N. Kumagai, *Chem. Mater.* 17, 3695 (2005).