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The Enhancement of Cycle-Life Performance in
LiCoO2 Thin Film by Partial Al2O3 Coating
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The electrochemical properties of Al2O3-coated LiCoO2 thin films with a partial coating coverage were inves-
tigated. The Al2O3-coated LiCoO2 films showed better cycle-life performances with 100% coating coverage.
In addition, the Al2O3-coating layer with a partial coverage of 50% clearly enhanced the electrochemical
properties of LiCoO2 cathodes even at 60°C. The Al2O3-coating layer suppresses Co dissolution from LiCoO2,
consequently enhancing the cycle-life performance.
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1. INTRODUCTION

Commercial rechargeable lithium-ion batteries use
LiCoO2 cathodes extensively due to their high energy den-
sity and good cycle-life performance.[1] However, when
charged to 4.4 V or above, this material shows relatively
severe capacity fading after extended cycling. This is attrib-
uted to structural changes in LiCoO2,

[2] cobalt dissolution
into the electrolyte,[3] oxygen loss,[4] and the formation of
electrochemically resistive surface films.[5]

Surface modification through coating with various metal
oxides and metal phosphates is an effective method to
resolve the problem of severe capacity fading at high cutoff
voltages.[6-13] It has been found that even partial or non-uni-
form metal-oxide coating also enhances the cycle-life perfor-
mance of cathode materials.[14,15] In this article, the effects of
Al2O3-coating coverage on the electrochemical properties of
thin-film LiCoO2 are reported.

2. EXPERIMENTS

The LiCoO2 thin films were prepared by using magnetron
sputtering on thermally-oxidized Si (100) substrates. All the
films were then annealed at 700°C in an oxygen atmosphere
for 30 min, and the Al2O3 thin films were deposited on the
LiCoO2 films by the reactive sputtering of an Al target with a
coating coverage of 0%, 50%, or 100%. After the Al2O3 dep-
osition, the coated and uncoated samples were annealed at
400°C for 2 h.

To evaluate the electrochemical properties of both the bare
and the Al2O3-coated LiCoO2 thin films, beaker-type half
cells were used. A Li-metal sheet was used as a counter/ref-
erence electrode, ~1 cm2 of active area LiCoO2 cathode as a
working electrode, and 1 M LiPF6 in ethylene carbonate/
diethyl carbonate as the electrolyte. The cells were cycled
over the voltage range of 4.4 and 2.75 V at 25°C and 60°C.

3. RESULTS AND DISCUSSION

The Al2O3-coated LiCoO2 thin film electrodes with 0%,
50%, or 100% coverage were cycled between 4.4 and 2.75 V
with an applied current density of 0.4 mA/cm2 (= 12 C) at
25°C. The cycle-life performances of the bare and Al2O3-
coated films (with 50% and 100% coating coverage) are
shown in Fig. 1, excluding the capacities of the constant-
voltage mode. The Al2O3-coated LiCoO2 films exhibit
enhanced capacity retention with increased coating cover-
age. Even the Al2O3-coated LiCoO2 with only 50% coverage
retains up to ~33% of its initial charge capacity after 200
cycles, whereas the bare LiCoO2 exhibits almost zero capac-
ity. It was previously reported that an Al2O3 coating with a
partial coverage of ~40% improved the capacity retention of
LiCo0.94Fe0.06O2.

[14] Oh et al. also reported that Al2O3-coated
LiCoO2 powders even with ~14% coverage enhanced cycle-
life performances.[15] The improvement of capacity retention
is observed more in the charging process than in the dis-
charging.

Figure 2 illustrates the voltage profiles of the bare and
Al2O3-coated LiCoO2 thin films with a coating coverage of
0%, 50%, or 100% at 25°C. Over 200 cycles, the profiles of
bare LiCoO2 films severely deteriorate. On the contrary,*Corresponding author: byungwoo@snu.ac.kr
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those of the Al2O3-coated LiCoO2 films during 200 cycles
show better performances. For 100% Al2O3-coated LiCoO2

films, a slight increase of polarization is observed in the ini-
tial cycle. However, as the cycles continue, the polarization
in the charge and discharge processes is not noticeable. Lith-

ium-ion migration through the coating layer gets easier as
the cycling goes on, and the coating layer is expected to act
as a solid electrolyte.[7,12,13] The characteristic profiles of the
coated cathodes worsen as the coating coverage decreases
from 100% to 50%.

The cycle-life performances at 60°C of the bare and
Al2O3-coated LiCoO2 thin films with different coverage
ratios are represented in Fig. 3. The initial capacity and the
capacity retention of the bare LiCoO2 films appear to deteri-
orate at higher temperature. Dramatic degradation of bare
LiCoO2 films is observed, because more significant Co dis-
solution from the cathode occurs at 60°C than at 25°C. It has
been reported that LiCoO2 powders exhibit more intense Co
dissolution at elevated temperatures, and this causes signifi-
cant capacity loss in LiCoO2 cathodes.[8] The Al2O3-coated
LiCoO2 films with 50% coverage exhibit rapid capacity fad-
ing after ~130 cycles at 60°C. However, the initial capacity
and the capacity retention of the Al2O3-coated LiCoO2 at
60°C are better with 100% Al2O3-coating coverage. Simi-
larly, the 100% coated-Al2O3 LiCoO2 film shows excellent
cycle-life performances even at higher temperature, com-
pared with the uncoated-LiCoO2 films.

Wang’s group reported that alumina nanoparticles soaked

Fig. 1. (Color) (a) The charge- and (b) discharge-capacity retention
of bare and Al2O3-coated LiCoO2 thin films. The cells were cycled
between 4.4 and 2.75 V at 0.4 mA/cm2 (= 12 C) and 25°C.

Fig. 2. (Color) Voltage profiles of the (a) bare, and Al2O3-coated
LiCoO2 films with (b) 50%, and (c) 100% surface coverage.

Fig. 3. (Color) (a) The charge- and (b) discharge-capacity retention of
bare and Al2O3-coated LiCoO2 films with a different coverage. The
cells were cycled between 4.4 and 2.75 V at 0.4 mA/cm2 and 60°C.
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in an electrolyte improved the cycle-life performances of
LiCoO2.

[16] Whether a dispersion of alumina nanoparticles in
electrolytes or a uniform Al2O3 coating on LiCoO2 is more
effective for enhancing cycle-life performance remains an
open question. With surface modifications, the Al2O3-coat-
ing layer reduces the amount of direct HF attack, while pre-
venting Li+ transport and electron conduction. However,
alumina nanoparticles in an electrolyte cannot initially pre-
vent the direct HF attack until the nanoparticles scavenge HF
from the electrolyte. Myung et al. reported that the Al2O3-
coated Li1.05Ni0.4Co0.15Mn0.4O2 cathode material exhibited
high electrochemical properties due to the HF scavenging of
Al2O3 layer.[17]

4. CONCLUSIONS

The electrochemical properties of Al2O3-coated LiCoO2

thin films with a different surface coverage of 0%, 50%, and
100% were studied. As discussed above, the LiCoO2 films
with even 50% coating coverage showed notably enhanced
performances. However, details on the mechanisms of the
scavenging effects need to be further identified.
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